Reduction of Substituted 1*H*-4,5-Dihydroimidazolium Salts [1]

Alejandra Salerno, Vanina Ceriani and Isabel A. Perillo*

Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica
Universidad Nacional de Buenos Aires, Junín 956
Buenos Aires, República Argentina
Received June 3, 1992

Reactions of several substituted 1*H*-4,5-dihydroimidazolium salts 1 with nucleophilic and electrophilic reducing agents acting *via* hydride transfer were explored. Reaction of compounds 1 with lithium aluminum hydride in THF afforded the corresponding imidazolidines 2. When alkaline borohydrides (sodium borohydride, potassium borohydride, sodium cyanoborohydride) in ethanol at room temperature were used, partial or total over-reduction of compounds 2 leading to *N*,*N*,*N*-trisubstituted ethylenediamines took place on occasion. Results may be explained taking into account that reductive cleavage of 2 proceeds *via* a stabilized iminium ion present in protic solvents. Treatment of compounds 1 with an excess of borane in THF afforded the corresponding imidazolidines 2 or their borane complexes, according to the substituent type.

J. Heterocyclic Chem., 29, 1725 (1992).

Introduction.

Isolated instances of reduction of the 1H-4,5-dihydroimidazolium salts 1 have been reported in the literature, giving rise to imidazolidines 2 [2-5] or their over-reduction products, that is, N,N,N-trisubstituted ethylenediamines 3[6] (Scheme I). However, there has been no systematic study on the influence of substituent type or on conditions affecting the course of the reaction.

In order to examine the potential reactive capacity of salts 1 as precursors of imidazolidines 2 [7] and to determine the scope of application of the reaction, we studied the reaction of compounds 1a-m (Scheme I) with both nucleophilic and electrophilic reducing agents acting by means of hydride ion transfer.

Results and Discussion.

The reaction of equimolecular amounts of compounds la-g and li-m with lithium aluminum hydride in tetra-hydrofurane (THF) by refluxing for 1 hour led without exception to the corresponding imidazolidines 2 in excellent yields.

The structural assignments of compounds 2 were based on microanalyses, spectroscopic properties (Table I), and, in some cases, by comparison with authentic samples [17].

When salts 1 were treated with alkaline borohydrides (sodium borohydride, potassium borohydride, sodium cyanoborohydride) in ethanol at room temperature, imidazolidines 2 were invariably the first product obtained. However, in certain cases such as the 1a-e,g compounds,

Scheme I

Table I
Substituted Imidazolidines 2a-m

No. C	Compound	-	Recrystal-	Previous	Formula	Analyses		IR			¹ H NMR		
	No.	(°C)		Reference					V	(cm ⁻¹)	δ (ppm)	_	Assignment
	2a	64	ethanol		$C_{16}H_{18}N_2$						7.42-6.40	m	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						80.62	7.65	11.73		1 1		8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										` '			
										, ,	2.25	8	N-CH ₃
Part Part													
2b													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2ь	70	methanol		$C_{17}H_{20}N_2O$	76.12	7.46	10.45	2910	(0 5/	7.50-7.35	m	C_6H_5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						76.10	7.50	10.40	2830	(C-H)	6.90	d	
									1610	(C-H)			(2 ortho H)
										, ,	6.60	d	
										` '			(2 meta H)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. 935		4.60		**
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										imidazolidine			
2c													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2c	89	methanol		C16H17N9Cl	70.46	6.24	10.27	2900	(C-H)			_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-10112					, ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, ,			• •
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									1310	(C-N)	6.25	d	Cl-C ₆ H ₄
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													(2 meta H)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											4.45	s	Ha
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											4 00 0 50		OTT OTT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	77	ethanol		CarHooNo	80 95	7.93	11 21					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		••	Cinanor		0171120112								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						00170	.,,,			• /		•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											6.52	d	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1305	(C-N)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										imidazolidine	4.50	5	Ha
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									910	imidazolidine		m	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	124	matha-al		CHN-	02 22	6 04	0.79	2020	(C II)			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	154	memanor		C201120112					• •			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						00.20	0.77	2.10		, ,			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, ,			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									1590	• •			3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	00			C II N C	70.46	C 0.4	10.07			7 (0 7 90		
1610 (C=C) 4.70 s Ha 1600 (C=C) 4.00-2.60 m CH ₂ -CH ₂ 1330 (C-N) 2.25 s N-CH ₃ 910 imidazolidine 790 (C-Cl)	21	99			C16H17N2CI								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						10.40	0.32	10.20					
1330 (C-N) 2.25 s N-CH ₃ 910 imidazolidine 790 (C-Cl)													
910 imidazolidine 790 (C-Cl)										, ,			
790 (C-Cl)													3
									790				
$740 \qquad (C_6H_5)$									740	(C_6H_5)			

Table I(continued)

Compound	Mp	Recrystal-	Previous	Formula	Analyses Calcd./Found		IR v (cm ⁻¹)		\$ ()	¹ H NMR Multi-	Assignment	
No.	(°C)	lization solvent	Reference		%C	%C	%N	v	(cm)	δ (ppm)	plicity	Assignment
2g	[a]			$C_{17}H_{20}N_2O$	76.12	7.46	10.45	2910	(C-H)	7.60-6.10	m	aromatics
	L			1. 20 2	76.00	7.53	10.40	2700	(C-H)	4.50	s	Ha
								1620	(C=C)	3.70	8	O-CH ₃
								1590	(C=C)	3.80-2.30	m	$\mathrm{CH_{2}\text{-}CH_{2}}$
								1300	(C-N)	2.20	8	N-CH ₃
								930	imidazolidine			
								915	imidazolidine			
								720	(C_6H_5)			
2h	hygro	scopic		$C_{16}H_{17}N_3O_2$	67.84	6.00	14.84	2950	(C-H)	8.00-6.70	m	aromatics
	[a]				67.70	6.20	14.70	2830	(C-H)	3.70	8	Ha
								1620	(C=C)	3.40-2.60	m	$\mathrm{CH_{2}\text{-}CH_{2}}$
								1325	(C-N)	2.30	8	N-CH ₃
								910	imidazolidine			
								920	imidazolidine			
								720	(C_6H_5)			
2 i	137	ethanol	[13]					2940	(C-H)	7.50-6.50	m	aromatics
								2830	(C-H)	6.00 3.5-4.00	5	Ha CH CH
								1630 1320	(C=C)	3.5-4.00	m	CH_2 - CH_2
								920	(C-N) imidazolidine			
								910	imidazolidine			
								740	(C ₆ H ₅)			
2j	125	methanol +	[2]					2750	(C-H)	7.50-6.50	m	aromatics
~,	120	water	[14]					1620	(C=C)	4.70	8	N-CH ₂ -N
			[15]					1600	(C=C)	3.50	s	$\mathrm{CH_{2} ext{-} ilde{C}H_{2}}$
			. ,					1330	(C-N)			
								940	imidazolidine			
								910	imidazolidine			
								720	(C_6H_5)			
2k	oil		[16]					2800	(C-H)	7.40-7.20	m	aromatics
								2720	(C-H)	3.60-3.20	m	CH ₂ -CH ₂
								1635	(C=C)	3.25	5	Ha N. CVI
								1315	(C-N)	2.20	5	N-CH ₃
								940 925	imidazolidine imidazolidine			
								730	(C_6H_5)			
21	oil			$C_{13}H_{20}N_2$	76.47	9.80	13.72	2800	(C-H)	6.70-6.25	m	C_6H_5
	[b]			0131120112			13.80	2750	(C-H)	3.80	5	Ha
	[D]				10.10	,,,,	20.00	1620	(C=C)	3.50-2.35	m	CH ₂ -CH ₂ and
								1330	(C-N)			$HC(CH_3)_2$
								930	imidazolidine	2.20	8	N-CH ₃
								920	imidazolidine	1.05	dd	$HC(CH_3)_2$
								720	(C_6H_5)			
2m	oil			$C_{11}H_{16}N_2$	75.00	9.03	15.91	2800	(C-H)	7.20-6.80	m	$C_6H_5-N=$
	[c]				75.20	9.15	15.98	2750	(C-H)			(2 meta H)
	-							1590	(C=C)	6.60-6.25	m	$C_6H_5-N=$
								1320	(C-N)			(para and 2
								1050	imidazolidine			ortho H)
								970	imidazolidine	4.20-3.00	m	CH ₂ -CH ₂
								530	(C II)	0.40		and Ha
								710	(C_6H_5)	2.40	8 .1	N-CH ₃
										1.10	d	C-CH ₃

[[]a] This compound could not be obtained as a solid sample. A pure sample was isolated by plc (benzene/methanol 9:1). [b] Bp 130-132° (760 mm) [17]. [c] Bp 143-145° (10 mm).

the alkaline borohydride cleaved the imidazolidine ring between C_2 and the N bearing the aryl radical, giving rise to a mixture consisting mainly of 1,2-diaryl-3-methylimidazolidines **2a-e,g** and N'-aryl-N-benzyl-N-methylethylenediamines **3a-e,g** (Scheme II). Over-reduction was completed in roughly 36 hours and the rate increases by heating.

Compounds 3 were characterized as picrates and their structure demonstrated on the basis of their spectroscopic properties (Table II), as well as by comparison with standard samples, obtained by reduction of the corresponding N-aryl-N-benzoyl-N-methylethylenediamines 4 with borane in THF (Scheme II).

N,N,N'-Trisubstituted-ethylenediamines 3

Compound No	-		R em ⁻¹)	δ (ppm)	¹ H NMR Multi- plicity	Assignment	Mp (°C) (ethanol)	Picrates Formul a	Analyses % C	s Calcd %H	Found %N
3 a	[19]	3250	(C-H)	7.52-6.51	m	aromatics	116	$\rm C_{28}H_{26}N_8O_{14}$	48.13	3.72	16.04
		2930	(C-H)	4.25	bs [a]	NH			48.30	3.85	16.20
		2830	(C-H)	3.60	5	СН ₂ с					
		1620	(C=C)	3.25	t	CH ₂ a					
		1305	(N-C)	2.72	t	СН ₂ Ь					
		720	(C_6H_5)	2.30	s	CH ₃					
3 Ь	[20]	3300	(N-H)	8.03	5	C_6H_5	140	$C_{29}H_{28}N_8O_{15}$	47.80	3.85	15.38
		2920	(C-H)	7.10	d	CH ₃ O-C ₆ H ₅			47.75	3.55	15.20
		2820	(C-H)			. (2 ortho H)					
		1620	(C=C)	6.90	d	CH ₃ O-C ₆ H ₅					
		1315	(C-N)			(2 meta H)					
		1210	(Ar-O-C)	4.35	bs [a]	NH					
		730	(C_6H_5)	3.92	8	O-CH ₃					
				3.75	8	CH₂ c					
				3.32	t	CH ₂ a					
				2.74	t	CH ₂ b					
				2.3	5	N-CH ₃					
3 e	[20]	3350	(N-H)	7.40	d	Cl-C ₆ H ₄	158	$C_{28}H_{25}N_8O_{14}Cl$	45.87	3.41	15.29
		2820	(C-H)			(2 ortho H)			45.75	3.39	15.30
		2790	(C-H)	6.80	d	Cl-C ₆ H ₄					
		1610	(C=C)			(2 meta H)					
		1305	(C-N)	4.50	bs [a]	NH					
		780	(C-Cl)	3.75	5	CH₂ c					
				3.32	t	CH ₂ a					
		720	(C_6H_5)	2.75	t	CII ₂ b					
				2.30	5	N-CH ₃					

Table II(continued)

Compound	Previous	IR v (cm ⁻¹)			¹ H NMR			Picrates			
No	Reference			δ(ppm)	Multi- plicity	Assignment	Mp (°C) (ethanol)	Formul a	Analyses Calcd % C %H		l./Found %N
3 d		3400	(N-H)	7.62	8	aromatics	142	$C_{29}H_{28}N_8O_{14}$	48.88	3.93	15.73
		2920	(C-H)	7.30	d	CH ₃ -C ₆ H ₄ -			48.95	3.95	15.87
		2810	(C-H)			(2 ortho H)					
		1630	(C=C)	6.90	d	CH ₃ -C ₆ H ₄					
		1315	(C-N)			(2 meta H)					
		760	(C_6H_5)	3.72	8	CH₂ c					
				3.50	bs [a] [b]	NH					
				3.33	t	CH ₂ a					
				2.75	t	СН ₂ Ь					
				2.32	5	N-CH ₃					
				2.20	8	Ar-CH ₃					
3e		3300	(N-H)	8.15-7.01	m	aromatics	168	$C_{32}H_{28}N_8O_{14}$	51.33	3.74	14.97
		2910	(C-H)	3.75	5	CH₂ c			51.47	3.89	15.05
		2850	(C-H)	3.41	t	CH ₂ a					
		1620	(C=C)	3.30	bs [a] [b]	NH					
		1310	(C-N)	2.84	t	CH ₂ b					
		720	(C_6H_5)	2.32	8	N-CH ₃					
3g		3330	(N-H)	7.25-6.72	m	aromatics	147	$C_{29}H_{28}N_8O_{15}$	47.80	3.85	15.38
		2900	(C-H)	4.10	bs [a]	NH			47.90	3.93	15.22
		2830	(C-H)	3.82	5	O-CH ₃					
		1620	(C=C)	3.51	5	CH ₂ c					
		1320	(C-N)	3.21	t	СН ₂ а					
		1215	(Ar-O-C)	2.60	t	СН ₂ ь					
		725	(C_6II_5)	2.22	8	N-CH ₃					
3k		3220	(N-H)	7.20	8	C_6H_5	155	$C_{23}H_{24}N_8O_{14}$	43.40	3.77	17.61
		2930	(C-H)	3.40	5	CH₂ c			43.30	3.85	17.77
		2850	(C-H)	2.80 - 2.52	m	CH ₂ a and					
		1610	(C=C)			CH ₂ b					
		1320	(C-N)	2.30	8	N - CH_3 (ter-					
		730	(C_6H_5)			tiary amine)					
				2.10	8	N-CH ₃ (secon	n-				
						dary amine)					
				2.08	s [a]	NH					
3m	[21,22]	3260	(N-H)	2.80-2.40	m	CH ₂ a, CH ₂ Ł	127				[22]
		2930	(C-H)			and $ m CH_2c$					
		2840	(C-H)	2.20	8	N-CH ₃ (ter-					
		1610	(C=C)			tiary amine)					
		1330	(C-N)	2.05	6	N-CH ₃ (secon	n-				
		720	(C_6H_5)			dary amine)					
				1.95	8	NH					
				1.1	t	CH ₃ -C					

[a] Exchangeable. [b] Partially overlapped with the triplet.

Reductive cleavage of 1,2-diaryl-3-methylimidazolidines in no case led to N-aryl-N-benzyl-N-methylethylenediamines **6**. In order to confirm the latter finding, N-benzyl-N-methyl-N-phenylethylenediamine **6** (Ar = R' = C₆H_s) was synthesized by an unambiguous route starting from **4** (Scheme II).

When reaction of 1k and 1m with alkaline borohydrides were performed, the reaction products, 2k and 2m,

could only be detected by tlc. Due to the fact that reductive cleavage of the imidazolidine ring took place rapidly, the only products isolated were 3k and 3m respectively. Likewise, compound 11 gave rise to a mixture of two isomers in roughly the same yield, presumably 31 and N-benzyl-N-isopropyl-N-methylethylenediamine 6 ($R = i \cdot C_3H_7$, $R' = C_6H_5$, $R'' = CH_3$, Scheme III).

Scheme III

Taken together, these results may be explained bearing in mind the mechanism advanced for reductive cleavage of imidazolidines and other cyclic aminals [23-25]. Thus, in analogy with other compounds having the = N-C(R)H-N= structural unit [26], reductive cleavage proceeds via a stabilized iminium ion (Scheme III), so that electron availability at the nitrogen atoms and the substituent type at C-2 should influence the ease of over-reduction and therefore the nature of the products obtained. Accordingly, the low electron density at the nitrogen atoms when R and/or R" is Ar, explains the following facts: (a) over-reduction of 1,2-diaryl-3-methylimidazolidines 2a-e,g and 1-aryl-2,3-di-

methylimidazolidine 2m (R = Ar, R'' = alkyl) led solely to the corresponding compounds 3, indicating that the reaction proceeds by preferential elimination of the less basic amine and the formation of the more stable iminium cation A (Scheme III) [26,27]. Similar results are observed in the borohydride reduction of 5,10-methylenetetrahydrofolic acid [29] and of compounds employed as its models [30]. Destabilization of the iminium ion in the presence of an electron-aceptor group at the C-2 aryl radical, such as $p\text{-NO}_2$ or p-Cl, explains why imidazolidines 2f and 2h fail to undergo ring cleavage under such experimental conditions. (b) 1,2-Diarylimidazolidines 2i and 2j (R = R'' = Ar) proved stable in the reducing medium.

In contrast, the high electron density at the two nitrogen atoms, when R and R" are alkyl radicals, explains why compounds **2k** and **2l** were rapidly over-reduced, and that **2l** yielded a mixture of two isomeric N, N, N'-trisubstituted ethylenediamines [31], presumably *via* the iminium ions **A** and **B**, similar in stability (Scheme III).

Since in the proposed mechanism (Scheme III) the hydroxylic solvent plays a leading role in the heterocyclic cleavage of the C-N linkage, the nature of the solvent must by essential for the reaction. Therefore, in order to avoid reductive cleavage of compounds **2a-e,g**, reduction of salts **1a-e,g** was carried out employing sodium borohydride supported on silica gel [33] in a non-hydroxylic sol-

vent such as chloroform or dichloromethane, allowing cyclic aminals 2 to be obtained in good yields. However, when sodium borohydride/aluminum oxide is used [34], a mixture of compounds 2 and 3 was again obtained.

Treatment of the 1,3-diaryl-1*H*-4,5-dihydroimidazolium salts **2i,j** with an excess of borane led to the corresponding imidazolidines in excellent yields. The remainder of the salts gave rise mainly to boron hydride/imidazolidine complexes, with only small amounts of the over-reduction product. These results contrast with those described by Northrop and Russ [35], who reported that imidazolidine cleavage with borane in a 1:1-1.75 molar ratio took place readily. Most likely the formation of imidazolidine complexes on employing an excess of borane in our present work prevented over-reduction [36]. Attempts to destroy such complexes by traditional methods resulted in total hydrolytic or partial reductive cleavage of the imidazolidines.

EXPERIMENTAL

Melting points were taken on a Büchi capillary apparatus and are uncorrected. The ir spectra were recorded on a Beckman 180 A spectrometer. Samples were run as potassium bromide pellets for solids and films for oils. The ¹H nmr spectra were obtained on a Varian FT 80 A spectrometer using deuteriochloroform as solvent. Chemical shifts are reported in parts per million (δ) downfield from an internal TMS reference. Signals are quoted as: s (singlet), d (doublet), t (triplet), m (multiplet) and bs (broad signal). The presence of exchangeable protons was confirmed by use of deuterium oxide. Mass spectra were recorded on a MS Shimadzu QP-1000 instrument at 20 ev. Analytical tlc was carried out on aluminium sheets Silica Gel 60 F254 using benzene-methanol (9:1) as the solvent. Column chromatography was carried out on Silica Gel 60 (70-325 mesh). Reagents, solvents and starting materials were purchased from standard sources and purified according to literature procedures.

N-Acyl-N'-arylethylenediamines.

The title compounds used as precursors of 1,2-disubstituted 1*H*-4.5-dihydroimidazoles, were prepared from the appropriated

N-(2-bromoethyl)carboxamide and arylamines by the method of Perillo et al. [40]. The physical data and elemental analyses of new compounds are as follows:

N-Benzoyl-N'-(p-tolyl)ethylenediamine.

This compound had mp 130° (ethanol); 1 H nmr: δ 8.15-6.50 (m, 10H, aromatics and CO-NH), 4.05-3.20 (m, 5H, CH₂-CH₂-NH) and 2.3 (s, 3H, CH₃).

Anal. Calcd. for $C_{16}H_{18}N_2O$: C, 75.59; H, 7.08; N, 11.02. Found: C, 75.43; H, 7.20; N, 11.10.

N-p-(Chlorobenzoyl)-N-phenylethylenediamine.

This compound had mp 140° (methanol); 1 H nmr: δ 8.20-6.45 (m, 10H, aromatics and CONH) and 4.10-3.35 (m, 5H, CH₂-CH₂-NH).

Anal. Calcd. for $C_{15}H_{15}N_2OCl$: C, 65.57; H, 5.46; N, 10.20; Cl, 12.93. Found: C, 65.49; H, 5.60; N, 10.25; Cl, 12.99.

N-Acetyl-N'-phenylethylenediamine.

C, 67.53; H, 7.98; N, 15.80.

This compound was obtained as an oil and was purified by column chromatography eluting with chloroform-methanol (9:1); ¹H nmr: δ 8.05 (bs, 1H, exchangeable, CONH), 7.15-6.90 (m, 2H, C₆H₅-NH, 2 meta H), 6.65-6.45 (m, 3H, C₆H₅-NH, 2 ortho H and para H), 4.10-3.55 (m, 5H, CH₂-CH₂-NH) and 2.10 (s, 3H, CH₃).

Anal. Calcd. for C₁₀H₁₄N₂O: C, 67.41; H, 7.86; N, 15.73. Found:

1,2-Disubstituted 1H-4,5-Dihydroimidazoles.

The title compounds were used as precursors of 1*H*-4,5-dihydroimidazolium salts 1d. 1f. 1e and 1m.

2-Phenyl-1 (p-tolyl)-1H-4,5-dihydroimidazole (lit [41]).

This compound was prepared by ring closure of N-benzoyl-N-(p-tolyl)ethylenediamine with PPE following the method of Perillo et al. [40]. It was used without further purification. An analytical sample was obtained by column chromatography; 1H nmr: δ 7.35-6.75 (m, 9H, aromatics), 4.00-3.50 (m, 4H, CH_2-CH_2) and 3.20 (s, 3H, CH_3).

Anal. Calcd. for $C_{16}H_{16}N_2$: C, 81.35; H, 6.78; N, 11.86. Found: C, 81.44; H, 6.85; N, 11.86.

2-(p-Chlorophenyl)-1-phenyl-1H-4,5-dihydroimidazole.

This compound was prepared by ring closure of N-(p-chlorobenzoyl)-N-phenylethylenediamine with PPE following the method of Perillo *et al.* [40]. This compound was obtained as an oil; ¹H nmr: δ 7.70-7.30 (dd, 4H, Cl-C₆H₄), 7.10-6.90 (m, 2H, C₆H₅-N=, 2 meta H), 6.75-6.50 (m, 3H, C₆H₅-N=, 2 ortho and para H) and 3.75-3.25 (m, 4H, CH₂-CH₂); ms: m/z 256 (M+). The base was analyzed as picrate, mp 140° (ethanol).

Anal. Calcd. for C₂₁H₁₆N₅O₇Cl: C, 51.90; H, 3.29; N, 14.42; Cl, 7.31. Found: C, 51.80; H, 3.40; N, 14.37; Cl, 7.38.

1-Isopropyl-2-phenyl-1H-4,5-dihydroimidazole.

This compound was synthesized from N-isopropylethylenediamine [18] and benzimidic acid methyl ester hydrochloride according to Hill's method [42]. The crude product was purified by column chromatography eluting with benzene-methanol (9:1). Appropriate fractions were pooled and evaporated to dryness to afford 40% of pure oily material; ¹H nmr: δ7.50-7.20 (m, 5H, C₆H₅), 4.00-3.25 (m, 5H, CH₂-CH₂ and CH) and 1.02 (d, 6H, CH₃); ms: m/z 188 (M+).

Anal. Calcd. for C₁₂H₁₆N₂: C, 76.59; H, 8.51; N, 14.89. Found:

C, 76.68; H, 8.64; N, 14.95.

1-Phenyl-2-methyl-1H-4,5-dihydroimidazole (lit [43,44]).

This compound was prepared by ring closure of N-acetyl-N-phenylethylenediamine with PPE following the method of Perillo et al. [40]. It was obtained as an oil and was purified as the preceding compound; 'H nmr: δ 7.40-7.10 (m, 2H, C₆H₅-N = , 2 meta H), 6.90-6.45 (m, 3H, C₆H₅-N = , 2 ortho and para H), 3.90 (s, 4H, CH₂-CH₂) and 2.15 (s, 3H, CH₃); ms: m/z 160 (M+).

Anal. Calcd. for C₁₀H₁₂N₂: C, 75.00; H, 7.50; N, 17.50. Found: C, 75.10; H, 7.62; N, 17.41.

1*H*-4,5-Dihydroimidazolium Salts 1.

Compounds 1a [45], 1b,c,e,g,h [1], 1i [46], 1j [47] and 1k [48] were prepared following literature methods.

Compounds 1d, 1f, 1e and 1m were obtained by treatment of the corresponding 1,2-disubstituted 1H-4,5-dihydroimidazole with methyl iodide according to our method [1]. The physical data and elemental analyses of new compounds are as follows:

1-Methyl-2-phenyl-3-(p-tolyl)-1H-4,5-dihydroimidazolium Iodide (1d).

This compound had mp 148° (2-propanol); 1 H nmr: δ 7.60-6.75 (m, 9H, aromatics), 4.4 (s, 4H, CH₂-CH₂), 3.15 (s, 3H, N-CH₃) and 2.10 (s, 3H, CH₃-Ar).

Anal. Calcd. for $C_{17}H_{19}N_2I$: C, 53.97; H, 5.02; N, 7.40. Found: C, 54.08; H, 5.15; N, 7.50.

2-(p-Chlorophenyl)-1-methyl-3-phenyl-1*H*-4,5-dihydroimidazolium Iodide (**1f**).

This compound had mp 198° (2-propanol); 1H nmr: δ 7.70-7.10 (m, 9H, aromatics), 4.60-4.30 (m, 4H, CH_2 - CH_2) and 3.25 (s, 3H, CH_3).

Anal. Calcd. for $C_{16}H_{16}N_2CII$: C, 48.18; H, 4.01; N, 7.02; Cl, 8.90. Found: C, 48.10; H, 4.19; N, 7.12; Cl, 8.96.

1-Isopropyl-3-methyl-2-phenyl-1*H*-4,5-dihydroimidazolium Iodide (11).

This compound had mp 75° (2-propanol); 1 H nmr: δ 7.50-7.20 (m, 5H, C₆H₅), 4.40-4.15 (m, 4H, CH₂-CH₂), 3.60 (symmetric m, 1H, CH), 2.80 (s, 3H, CH₃-N) and 1.25 (d, 6H, CH₃-C).

Anal. Calcd. for $C_{13}H_{19}N_2I$: C, 47.27; H, 5.76; N, 8.48. Found: C, 47.36; H, 5.86; N, 8.53.

1,2-Dimethyl-3-phenyl-1*H*-4,5-dihydroimidazolium Iodide (1m).

This compound had mp 68° (anhydrous 2-propanol); ¹H nmr: δ 7.60-7.20 (m, 5H, C₆H₅), 4.30 (s, 4H, CH₂-CH₂), 3.25 (s, 3H, CH₃-N) and 2.25 (s, 3H, CH₃-C).

Anal. Calcd. for $C_{11}H_{15}N_2I$: C, 43.70; H, 4.96; N, 9.27. Found: C, 43.78; H, 5.05; N, 9.37.

Reaction of 1*H*-4,5-Dihydroimidazolium Salts 1 with Lithium Aluminum Hydride. General Procedure.

To a suspension of 1*H*-4,5-dihydroimidazolium salts 1a-g,i-m (0.03 mole) in dry THF (40 ml), lithium aluminum hydride (0.03 mole) was added. The mixture was refluxed for 1 hour and then filtered. The organic solution was concentrated *in vacuo* affording imidazolidines 2a-g, i-m. Melting points, recrystallization solvents, elemental analyses and spectroscopic data of the compounds are given in Table I. Structures were confirmed by comparison with authentic samples [17].

N'-Aryl-N-benzyl-N-methylethylenediamines 3a-e,g.

These compounds were obtained by reduction of the corresponding N'-aryl-N-benzoyl-N-methylethylenediamines 4 [1] with diborane according to the procedure described by Brown and Heim [49]. The ir and 'H nmr of the bases, melting points and elemental analyses of the picrates are given in Table II.

N-Benzyl-N'-methyl-N-phenylethylenediamine 6 (Ar = R' = C_6H_5).

A mixture of N-benzoyl-N-methyl-N'-phenylethylenediamine 4 (Ar = R' = C_6H_5) [50] (0.01 mole) and benzyl chloride (0.011 mole) in ethanol (30 ml) was refluxed and the reaction monitored by tlc. When reactants were no longer detectable (ca. within 4 hours), the solvent was removed in vacuo and the crude product purified by column chromatography using chloroform:methanol (9:1) as the eluent. Removal solvent of the main fraction furnished N-benzoyl-N'-benzyl-N-methyl-N'-phenylethylenediamine 5 (Ar = R' = C_6H_5) (35% yield); ¹H nmr: δ 7.70-6.75 (m, 15H, aromatics), 4.00-3.25 (m, 6H, CH₂-CH₂ and Ar-CH₂) and 2.90 (s, 3H, CH₃); ms: m/z 344 (M +).

A mixture of **5** (Ar = R' = C_6H_5) (400 mg) in ethanol (10 ml) and 10% sodium hydroxide (5 ml) was refluxed for 4 hours. After cooling, the mixture was extracted with methylene chloride and the organic layer washed with water, dried and concentrated in vacuo. The residue was purified by chromatography and eluted with benzene-methanol (7:3) to give N-benzyl-N'-methyl-N-phenylethylenediamine **6** (Ar = R' = C_6H_5) (28% yield) as a colorless oil; Rf 0.24 (chloroform-methanol, 9:1); ¹H nmr: δ 7.30-6.55 (m, 10H, aromatics), 3.75-3.55 (m, 4H, CH₂-N-CH₂), 2.6 (t, 2H, CH₂-NH), 2.10 (s, 3H, CH₃) and 1.5 (s, 1H, exchangeable, NH); ms: m/z 240 (M+).

Reaction of 1*H*-4,5-Dihydroimidazolium Salts 1 with Alkaline Borohydrides.

Alkaline borohydride (sodium borohydride, potassium borohydride or sodium cyanoborohydride) (0.05 mole) was added during 5 minutes to a solution of the respective 1H-4,5-dihydroimidazolium salt la-m (0.01 mole) in ethanol (20 ml) keeping the mixture at room temperature for one hour. The solvent was then removed in vacuo and water (50 ml) added to the residue. The suspension was extracted with three 10 ml portions of chloroform. The organic layer was decanted, washed, dried and then examined by the using chloroform-methanol (9:1) as solvent.

Solutions obtained from compounds **1f,h-j** showed a single spot which was identified as the corresponding imidazolidine [17]. Solvent removal afforded compounds **2f,h-j** (Table I).

The organic solutions obtained from compounds 1k and 1m showed single low Rf spots. Reaction product of compound 1k failed to absorb at 254 nm and was developed by iodine vapours. Solvent removal afforded 3k and 3m which were isolated as bases and characterized as picrates (Table II). Likewise, compound 1l rendered an oil which on being developed with iodine proved to be a mixture of two low Rf components whose separation was achieved by column chromatography using 7:3 benzenemethanol as the eluent; ms: m/z 206 (M+) for both compounds. Immediately after completing borohydride addition, organic solutions from compounds 1k-m yielded detectable amounts of the corresponding imidazolidines 2k-m [17] which rapidly evolved into the final reaction products.

Organic solutions from borohydride reaction with compounds la-e,g showed the presence of three spots identified by comparison with standard samples: the one of greatest Rf (ca. 0.9) as the imidazolidene/boron hydride complex [51,52]; the one of least Rf (ca. 0.6) as N-aryl-N-benzyl-N-methylethylenediamine 3a-e,g (Table II); and the one of intermediate Rf (ca. 0.8) as the corresponding imidazolidine [17] (Table I).

In the case of the reaction involving compounds **1c**, the boron hydride/**2c** complex was isolated after evaporating the solvent and treating the residue with a small volume of methanol; its melting point was 145°; ir: 2910 (C-H), 2830 (C-H), 2320 (B-H), 1600 (C=C), 1320 (C-N), 970 (imidazolidine) and 930 cm⁻¹ (imidazolidine).

Anal. Calcd. for $C_{16}H_{20}N_2BCl$: C, 67.13; H, 6.99; N, 9.79. Found: C, 67.35; H, 7.20; N, 9.95.

In the solution obtained from compound 1a there were no traces of N-benzyl-N'-methyl-N-phenylethylenediamine 6 (Ar = R' = C₆H₅) (Rf 0.24), chloroform-methanol (9:1). In solutions from remaining compounds no further spot attributable to compounds 6 could be detected.

Treatment of compounds la-e,g with alkaline borohydrides for 36 hours at room temperature or refluxing for 3 hours rendered solely compounds 3a-e,g, which were isolated as bases and characterized as picrates (Table II).

Reaction of 1*H*-4,5-Dihydroimidazolium Salts 1 with Sodium Borohydride Supported on Silica Gel. General Procedure.

In a stirred solution of compounds 1a-e,g (0.01 mole) in anhydrous methylene chloride (30 ml), sodium borohydride supported on silica gel (3 g) [33] was added in two portions at 10 minute intervals. Stirring was continued at room temperature for several hours and the reaction followed by tlc. When transformation $1 \rightarrow 2$ was achieved the reagent was filtered, washed with methylene chloride and the filtrate evaporated to dryness, affording imidazolidines 2.

When the reaction was performed with sodium borohydride supported on alumina [34] a mixture of compounds 2 and 3 was obtained.

Reaction of 1H-4,5-Dihydroimidazolium Salts 1 with Borane.

1H-4,5-Dihydroimidazolium salts 2a-g,i-m (0.001 mole) was rapidly added as a solid, to a 2.15 M solution of borane in THF (10 ml) [56] magnetically stirred at 0° under a dry nitrogen atmosphere. The cooling bath was then removed and stirring continued for 3 hours. The solution mixture was examined by tlc.

Solutions obtained from compounds 1i and 1j showed the sole presence of the corresponding imidazolidines 2i and 2j, which were isolated by solvent removal in a 90-95% yield.

Solutions from remaining salts showed the presence of the corresponding imidazolidine borane complex [51] as the main product. Evaporating the solvent and heating the residue with methanol or water to destroy the complex rendered a mixture of roughly equal amounts of the corresponding compounds 2 and 3. Alternatively, the residue obtained from reduction with borane was treated with an excess of aqueous hydrochloric acid and extracted with a small volume of chloroform to eliminate non-basic products. The resulting acid solution was alkalinized and extracted with chloroform. The organic solution was washed, dried and examined by tlc, showing the presence of the corresponding N,N'-disubstituted ethylenediamine as the main product, together with small amounts of compounds 3 [57].

Acknowledgements.

Financial support of this investigation was given by the Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires.

REFERENCES AND NOTES

- [1] Preceding paper in this series: B. M. Fernández, A. M. Reverdito, G. A. Paolucci and I. A. Perillo, *J. Heterocyclic Chem.*, 24, 1717 (1987).
 - [2] V. L. Jaenicke and E. Brode, Liebigs Ann. Chem., 624, 120 (1959).
- [3] I. Perillo and S. Lamdan, J. Chem. Soc., Perkin Trans. I, 894 (1975).
- [4] H. Bieraugel, R. Plemp, H. C. Hiemstra and U. K. Pandit, *Heterocycles*, 13, 221 (1979).
- [5] H. Bieraugel, R. Plemp and U. K. Pandit, Heterocycles, 14, 947 (1980).
- [6] M. W. Anderson, R. C. F. Jones and J. Saunders, J. Chem. Soc., Chem. Commun., 282 (1982).
- [7] Imidazolidines and homologous cyclic aminals have particular interest since they may act as carriers of pharmacologically active alkylene-diamines [8-10] and carbonilic compounds [11,12].
 - [8] H. A. Nieper, Arztl. Forsch., 20, 18 (1966).
- [9] H. Schöenemberger, A. Adam and D. Adam, Arzneim.-Forsch., 16, 734 (1966).
 - [10] J. H. Billman and M. S. Khan, J. Med. Chem., 11, 312 (1968).
- [11] G. Crank, D. R. K. Harding and S. S. Szinai, J. Med. Chem., 13, 1212 (1970).
- [12] G. Crank, D. R. K. Harding and S. S. Szinai, J. Med. Chem., 13, 1215 (1970).
 - [13] F. Moos, Ber., 20, 732 (1887).
- [14] R. A. Donia, J. A. Shutton, L. O. Bentz and G. E. P. Smith, Jr., J. Org. Chem., 14, 952 (1949).
- [15] A. Bischoff, Ber., 31, 3255 (1898).
- [16] N. Indictor, J. W. Horodniak, H. Jaffe and D. Miller, J. Chem. Eng. Data, 14, 76 (1969).
- [17] Imidazolidines used as reference compounds were synthesized from the corresponding aldehydes and N,N'-disubstituted ethylenediamines. N-Isopropyl-N'-methylethylenediamine used as precursor of imidazolidine 2l had bp 195°. We synthesized it from N-(2-bromoethyl)methylamine hydrobromide and isopropylamine according to the procedure described for alkylethylenediamines by O'Gee and Woodburn [18]; 'H nmr: δ 2.65 (symmetric m, 1H, CH), 2.60 (s, partially overlapped with the multiplet, 4H, CH₂-CH₂), 2.35 (s, 3H, N-CH₃), 1.40 (s, 2H, exchangeable, NH) and 1.0 (d, 6H, CH₃-C).
- Anal. Calcd. for $C_6H_{16}N_2$: C, 62.07; H, 13.79; N, 24.14. Found: C, 62.25; H, 13.92; N, 24.01.
- [18] R. C. O'Gee and H. M. Woodburn, J. Am. Chem. Soc., 73, 1370 (1951).
- [19] W. B. Wright, Jr., H. J. Brabander and R. A. Hardy, Jr., J. Org. Chem., 26, 485 (1961).
- [20] W. B. Wright, Jr., and H. J. Brabander, J. Org. Chem., 26, 4057 (1961).
- [21] W. B. Wright, Jr., H. J. Brabander and R. A. Hardy, Jr., J. Org. Chem., 26, 476 (1961).
- [22] W. B. Wright, Jr., H. J. Brabander and R. A. Hardy, Jr., J. Org. Chem., 26, 2120 (1961).
 - [23] E. M. Wilson, Chem. Ind., 472 (1965).

- [24] E. M. Wilson, Tetrahedron, 21, 2561 (1965).
- [25] R. F. Evans, Aust. J. Chem., 20, 1643 (1967).
- [26] G. Moad and S. J. Benkovic, J. Am. Chem. Soc., 100, 5495 (1978).
- [27] Carbonium ion stabilization is also the most crucial factor to determine the direction of ring opening in acid hydrolysis of unsymmetrical imidazolidines [28].
- [28] T. H. Fife, J. E. C. Hutchins and A. M. Pellino, J. Am. Chem. Soc., 100, 6455 (1978).
- [29] V. S. Gupta and F. M. Huennekens, Arch. Biochem. Biophys., 120, 712 (1967).
- [30] T. H. Barrows, P. R. Farina, R. L. Chrzanowski, P. A. Benkovik and S. J. Benkovic, *J. Am. Chem. Soc.*, 98, 3678 (1976).
- [31] Reductive ring cleavage of 1,3-disubstituted imidazolium iodides by sodium borohydride also renders a mixture of isomeric ethylenediamines [32].
 - [32] E. F. Godefroi, J. Org. Chem., 33, 860 (1968).
 - [33] V. Ciurdaru and F. Hodosan, Rev. Roum. Chim., 22, 1027 (1977).
 - [34] F. Hodosan and N. Serban, Rev. Roum. Chim., 14, 12 (1969).
 - [35] R. Northrop, Jr. and P. L. Russ, J. Org. Chem., 40, 558 (1977).
- [36] Borane complexes have been employed as amine protector groups in oxidation [37,38] and Friedel-Crafts reactions [39].
- [37] M. A. Schwartz, B. F. Rose and Baburao Vishnuvajjala, J. Am. Chem. Soc., 95, 612 (1973).
- [38] S. M. Kupchan and Chang-Kyu Kim, J. Org. Chem., 41, 3210 (1976).
- [39] I. Monkovic, C. Bachand and H. Wong, J. Am. Chem. Soc., 100, 4609 (1978).
 - [40] I. A. Perillo and S. Lamdan, J. Heterocyclic Chem., 7, 791 (1970).
 - [41] M. W. Partridge and H. A. Turner, J. Chem. Soc., 1308 (1949).
 - [42] A. J. Hill and J. V. Johnston, J. Am. Chem. Soc., 76, 922 (1954).
- [43] A. Frank and T. Dockner, German offen, 2,512,513; Chem. Abstr., 86, 29818; (1977).
- [44] T. Dockner and A. Frank, German offen, 3,236,598; Chem. Abstr., 101, 55098x (1964).
- [45] B. Fernández, I. A. Perillo and S. Lamdan, J. Chem. Soc., Perkin Trans. II, 545 (1978).
 - [46] E. Rabe and H.-W. Wanzlick, Liebigs Ann. Chem., 195, (1975).
- [47] M. May, T. J. Bardos, F. L. Barger, M. Landsford, J. M. Ravel, G. L. Sutherland and W. Shive, J. Am. Chem. Soc., 73, 3067 (1951).
- [48] M. J. Cook, A. R. Katritzky, A. D. Page, R. D. Tack and H. Witek, *Tetrahedron*, 32, 1773 (1976).
 - [49] H. C. Brown and P. Heim, J. Org. Chem., 38, 912 (1973).
- [50] B. Fernández, I. A. Perillo and S. Lamdan, J. Chem. Soc., Perkin Trans. II. 545 (1978).
- [51] The imidazolidine/borane complex used as a reference compound was synthesized from the corresponding imidazolidine and borane in THF.
- [52] The action of sodium borohydride on basic compounds as a borane donor has already been reported (Among others, ref [33] and [52] to [55]).
- [53] R. Köster, G. Bruno and P. Binger, *Liebigs Ann. Chem.*, **644**, 1 (1961).
 - [54] J. A. Dilts and E. C. Ashby, Inorg. Chem., 9, 855 (1970).
- [55] B. B. Robinson and K. A. H. Adams, Tetrahedron Letters, 6169 (1968).
 - [56] H. C. Brown and R. L. Sharp, J. Am. Chem. Soc., 90, 2915 (1968).
- [57] Since N,N'-disubstituted ethylenediamines arise from the decomposition of the imidazolidine/borane complex and later hydrolysis of the imidazolidine, the presence of small amounts of compounds 3 indicates that over-reduction is minimal under the given experimental conditions.